C Stabtragwerke

1 Querkraftschub in dünnwandigen Querschnitten

Voraussetzungen zur Geometrie:

prismatische Stäbe

. Wanddicke klein gegenüber restlichen Abmessungen des Querschnitts -Stabschale

Hypothesen:

- Kinematische Hypothese (Aussage bezüglich Verformungen) Querschnittsform bleibt erhalten
 - Kinetische Hypothesen (Annahmen bezüglich Spannungen) Schubspannungen ∥Profilmittellinie Schubspannungen über Wanddicke konstant Schubspannungen ⊥ Profilmittellinie vernachlässigbar klein (ESZ) keine Normalspannungen in Richtung der Profilmittellinie

1.1 Querkraftschubspannungen

1.1.1 Offene Querschnitte (einfach zusammenhängende Querschnitte)

Gleichgewicht am Stabelement dV = ds dz h:

$$\uparrow: \quad t_0 \, ds - \left(t_0 + t_{0,z} \, dz\right) ds = 0$$

$$\rightarrow: \quad \sigma_{zz} \, h \, ds - \left(\sigma_{zz} + \sigma_{zz,z} \, dz\right) h \, ds + t_0 \, dz - \left(t_0 + t_{0,s} \, ds\right) dz = 0 \quad .$$

Aus diesen Gleichungen folgt:

$$t_{0,z} = 0 \qquad \implies \quad t_0 = t_0(s)$$

und

$$h \sigma_{zz,z} + t_{0,s} = 0 \qquad \Longrightarrow \qquad t_0 = -\int_0^s h \sigma_{zz,z} \, d\overline{s}$$

Die Biegespannung σ_{zz} wird durch die Querkräfte F_{Qx} und F_{Qy} hervorgerufen. Sie verursachen die Momente:

$$M_{bx} = +F_{Qy} z$$
$$M_{by} = -F_{Qx} z \quad .$$

Diese Gleichungen werden in die aus der Grundlagenmechanik bekannten Beziehung für die Biegung um Hauptachsen

$$\sigma_{zz} = \frac{M_{bx}}{I_{xx}} y - \frac{M_{by}}{I_{yy}} x$$

eingesetzt, mit dem Ergebnis:

$$\sigma_{zz} = \frac{F_{Qy}}{I_{xx}} y z + \frac{F_{Qx}}{I_{yy}} x z \quad .$$

Unter den getroffenen Voraussetzungen folgt daraus:

$$\sigma_{zz,z} = \frac{F_{Qy}}{I_{xx}} y + \frac{F_{Qx}}{I_{yy}} x$$

und

$$t_0 = -\frac{F_{Qx}}{I_{yy}} \int_0^s x h \, d\overline{s} - \frac{F_{Qy}}{I_{xx}} \int_0^s y h \, d\overline{s}$$

bzw.

$$t_0(s) = -\left[\frac{F_{Qx}}{I_{yy}}S_{y0}(s) + \frac{F_{Qy}}{I_{xx}}S_{x0}(s)\right]$$
(3.1)

mit den statischen Momenten der Querschnittsfläche:

$$S_{x0}(s) = \int_{0}^{s} y h \, d\overline{s} = \int_{0}^{A(s)} y \, dA$$

$$S_{y0}(s) = \int_{0}^{s} x h \, d\overline{s} = \int_{0}^{A(s)} x \, dA$$

(3.2)

1.1.2 Geschlossene Querschnitte (ein- und mehrzellige Querschnitte)

Ein aus n Zellen bestehender Stab ist n-fach statisch unbestimmt (in jeder Zelle ein unbekannter Schubfluss).

Beispiel:

Algorithmus:

1. Erzeugung eines statisch bestimmten Hauptsystems (offen, verzweigt) durch Aufschneiden aller n Zellen.

Festlegung des Hauptweges (Koordinate s) und der Verzweigungen (Koordinaten s_k). Ermittlung des Schubflusses t_0 für diesen Stab.

Beispiel:

- 2. Annahme zusätzlicher konstanter Schubflüsse Δt_i (i = 1, ..., n) in allen Zellen. Damit wird der Gesamtschubfluss bei <u>bandförmiger Anordnung</u> der Zellen:
 - allgemein : in den Außenwänden : in den Stegen zwischen zwei Zellen : $t_i = t_{0i} + \Delta t_i$ $t_i = t_{0i} + (\Delta t_i - \Delta t_{i-1})$

Zelle i - 1 Zelle i Zelle i + 1 Δt_{i-1} u_i Δt_{i+1}

 Δt_i

3. Geometrische Bedingung:

Die Schubverzerrung γ_{zs} auf Grund des Gesamtschubflusses *t* an der Schnittstelle jeder Zelle verschwindet:

$$\oint \gamma_{zs} \, ds = 0$$

Mit dem HOOKEschen Gesetz für diese Verzerrung:

•

$$\gamma_{zs} = \frac{t}{Gh}$$

und den Beziehungen für den Gesamtschubfluss erhält man für die Zelle i :

$$\oint_{(i)} t_0 \frac{ds}{Gh} + \int_{(i,i-1)} \left(\Delta t_i - \Delta t_{i-1} \right) \frac{ds}{Gh} + \int_{(i,0)} \Delta t_i \frac{ds}{Gh} + \int_{(i,i+1)} \left(\Delta t_i - \Delta t_{i+1} \right) \frac{ds}{Gh} = 0$$

oder umgeformt:

$$-\Delta t_{i-1} \int_{(i,i-1)} \frac{ds}{Gh} + \Delta t_i \oint_{(i)} \frac{ds}{Gh} - \Delta t_{i+1} \int_{(i,i+1)} \frac{ds}{Gh} = -\oint_{(i)} t_0 \frac{ds}{Gh}$$
(3.3)

Bei Beachtung der Definitionen:

$$\Delta t_0 = \Delta t_{n+1} = 0$$

kann die letzte Beziehung n Mal geschrieben werden. Die Lösungen des dadurch entstehenden Gleichungssystems sind die Zusatzschubflüsse für jede Zelle.

Hinweis: Es empfiehlt sich, für jede Zelle eine eigene Umlaufkoordinate u_i einzuführen. Fallen die Koordinaten *s* für das geöffnete Profil mit den u_i zusammen, ist t_0 wie im Schritt 1 berechnet einzusetzen, anderenfalls mit entgegen gesetztem Vorzeichen.

Sonderfall: Einzelliger Querschnitt

$$\Delta t = -\frac{\oint \frac{t_0}{Gh} ds}{\oint \frac{1}{Gh} ds}$$

Bei einfacher Symmetrie der Zelle ist der Zusatzschubfluss Δt gleich null, wenn die Öffnung der Zelle auf die Symmetrieachse gelegt wird.

1.2 Schubmittelpunkt

Der **Schubmittelpunkt** (oder Drillruhepunkt) M ist der Punkt des Querschnitts, der bei Torsionsbeanspruchung in Ruhe bleibt. Die Schubmittelpunktsachse eines prismatischen Stabes bleibt gerade.

Wenn aber Torsionsmomente keine Verformung dieser Achse bewirken, dann können durch den Schubmittelpunkt gehende Querkräfte F_{Qx} , F_{Qy} keine Verdrehungen der Querschnitte hervorrufen (Satz von BETTI, Enrico Betti, 1823 - 1892).

1.2.1 Offene Querschnitte

Moment um Stabachse (Äquivalenzbetrachtung):

 r_t (senkrechter) Abstand der Schubkraft $t_0 ds$ vom Schwerpunkt *S*

 x_{M0}, y_{M0} Koordinaten des Schubmittelpunkts M_0

In diese Gleichung wird der Schubfluss nach der oben hergeleiteten Beziehung (3.1) eingesetzt:

$$-\int_{0}^{l} \left[\frac{F_{Qx}}{I_{yy}} S_{y0}(s) + \frac{F_{Qy}}{I_{xx}} S_{x0}(s) \right] r_{t} ds = F_{Qy} x_{M0} - F_{Qx} y_{M0}$$

Der Koeffizientenvergleich ergibt:

$$x_{M0} = -\frac{1}{I_{xx}} \int_{0}^{l} S_{x0}(s) r_{t} ds$$

$$y_{M0} = +\frac{1}{I_{yy}} \int_{0}^{l} S_{y0}(s) r_{t} ds$$
(3.5)

1.2.2 Geschlossene Querschnitte

Durch analoges Vorgehen zur Spannungsermittlung (Öffnen des Querschnitts, Einführen von Zusatzschubflüssen) erhält man die entsprechende Äquivalenzbeziehung:

$$\int t_0 r_t ds + \sum_{i=1}^n \left(\Delta t_i \oint_{(i)} r_t du \right) = F_{Qy} x_M - F_{Qx} y_M$$

Mit (s. Skizzen)

und der Äquivalenzbeziehung für das offene Profil nimmt die obige Äquivalenzbeziehung folgende Form an:

$$\sum_{i=1}^{n} \left(\Delta t_{i} \oint_{(i)} r_{t} du \right) = F_{Qy} \Delta x_{M} - F_{Qx} \Delta y_{M}$$

Spaltet man noch Δt_i auf in die von beiden Querkräften herrührenden Anteile:

$$\Delta t_i = \Delta t_{xi} + \Delta t_{yi}$$

S

und beachtet die Identität (s. Skizze):

dann folgen die Korrekturglieder Δx_M und Δy_M zu:

$$\Delta x_{M} = \frac{2}{F_{Qy}} \sum_{i=1}^{n} \Delta t_{yi} A_{mi}$$

$$\Delta y_{M} = -\frac{2}{F_{Qx}} \sum_{i=1}^{n} \Delta t_{xi} A_{mi}$$
(3.6)

Die Zusatzschubflüsse Δt_{xi} und Δt_{yi} werden dabei durch Aufspalten der Gleichung für die Zusatzschubflüsse Δt_i (3.3) gewonnen:

$$-\Delta t_{xi-1} \int_{(i,i-1)} \frac{ds}{Gh} + \Delta t_{xi} \oint_{(i)} \frac{ds}{Gh} - \Delta t_{xi+1} \int_{(i,i+1)} \frac{ds}{Gh} = \frac{F_{Qx}}{I_{yy}} \oint_{(i)} S_{y0} \frac{du}{Gh}$$

$$-\Delta t_{yi-1} \int_{(i,i-1)} \frac{ds}{Gh} + \Delta t_{yi} \oint_{(i)} \frac{ds}{Gh} - \Delta t_{yi+1} \int_{(i,i+1)} \frac{ds}{Gh} = \frac{F_{Qy}}{I_{xx}} \oint_{(i)} S_{x0} \frac{du}{Gh} \quad .$$

$$(3.7)$$

Die Schubspannung berechnet sich nach (3.1):

$$\tau_0(s) = \frac{t_0(s)}{h} = -\frac{F_{Qy}}{I_{yy}} \frac{1}{h} S_{x0}(s)$$

die Schubmittelpunktskoordinate x_{M0} nach (3.5):

$$x_{M0} = -\frac{1}{I_{xx}} \int_{0}^{l} S_{x0}(s) r_{t} ds$$

Die Schubmittelpunktskoordinate y_{M0} ist wegen der Symmetrie der Fläche zur *x*-Achse null.

Damit müssen insgesamt folgende Größen zur Lösung des Problems bereitgestellt werden:

Schwerpunktskoordinate \overline{x}_s der Fläche

axiales Flächenträgheitsmoment I_{xx}

Verlauf des statischen Moments bezüglich der x-Achse: $S_{x0}(s)$

Abstand r_t der Mittelfläche(n) vom Schwerpunkt.

•

Zur Ermittlung des statischen Momentes bezüglich der *x*-Achse wird die Profilmittellinie in drei Abschnitte eingeteilt (Koordinaten s_1 , s_2 , s_3 – s. Aufgabenstellung).

Schwerpunktskoordinate \overline{x}_s :

$$\overline{x}_{s} = \frac{0+2\frac{a}{2}ah}{4ah} = \frac{a}{4} = 12,5 mm$$

axiales Flächenträgheitsmoment I_{xx} :

$$I_{xx} = \frac{h(2a)^3}{12} + 2\left(\frac{ah^3}{12} + a^2ah\right) \approx \frac{8}{3}a^3h = 13, 3 \cdot 10^4 mm^4$$

Die weitere Rechnung erfolgt zweckmäßigerweise in Tabellenform:

i	Уi	$S_{x0i}(s_i) = S_{x0i-1}(l_{i-1}) + \int_0^{s_i} y_i \ h \ ds_i$	r_{ti}	$\int_{0}^{l_i} S_{x0i} r_{ti} ds_i$
1	а	$\int_{0}^{s_{1}} a h d\overline{s_{1}} = a h s_{1}$	а	$\int_{0}^{a} a h s_{1} a ds_{1} = \frac{a^{4} h}{2}$
2	$a-s_2$	$a^{2}h + \int_{0}^{s_{2}} \left(a - \overline{s}_{2}\right) h \overline{s}_{2} = h\left(a^{2} + as_{2} - \frac{s_{2}^{2}}{2}\right)$	$\frac{a}{4}$	$\int_{0}^{2a} h\left(a^{2} + as_{2} - \frac{s_{2}^{2}}{2}\right) \frac{a}{4} ds_{2} = a^{4}h\left(\frac{1}{4}2 + \frac{1}{8}4 - \frac{1}{24}8\right)$ $= \frac{2}{3}a^{4}h$
3	- <i>a</i>	$a^{2}h + \int_{0}^{s_{3}} (-a)h d\overline{s}_{3} = h(a^{2} - a s_{3})$	а	$\int_{0}^{a} h(a^{2} - a s_{3}) a ds_{3} = a^{4} h\left(1 - \frac{1}{2}\right) = \frac{a^{4} h}{2}$
			Σ	$\frac{5}{3}a^4h$

Die Schubspannungen in den einzelnen Bereichen lauten damit:

$$\begin{aligned} \tau_0(s_1) &= -\frac{F_{Qy}}{\frac{8}{3}a^3h^2} ah s_1 = -\frac{F_{Qy}}{ah} \frac{3}{8} \frac{s_1}{a} \\ \tau_0(s_2) &= -\frac{F_{Qy}}{\frac{8}{3}a^3h^2} h \left(a^2 + a s_2 - \frac{s_2^2}{2} \right) = -\frac{F_{Qy}}{ah} \frac{3}{8} \left(1 + \frac{s_2}{a} - \frac{1}{2} \frac{s_2^2}{a^2} \right) \\ \tau_0(s_2 = a) &= -\frac{9}{16} \frac{F_{Qy}}{ah} = -\frac{9}{320} \frac{F_{Qy}}{mm^2} = -0,0281 \frac{F_{Qy}}{mm^2} \\ \tau_0(s_3) &= -\frac{F_{Qy}}{\frac{8}{3}a^3h^2} h \left(a^2 - a s_3 \right) = -\frac{F_{Qy}}{ah} \frac{3}{8} \left(1 - \frac{s_3}{a} \right) \end{aligned}$$

Die normierten Verläufe

$$\overline{\tau}_{0}(s_{i}) = \frac{\tau_{0}(s_{i})}{\frac{3}{8} \frac{F_{Qy}}{a h}}$$

sind in der folgenden Abbildung dargestellt:

6 / 27. Mai 2009

Die *x*-Koordinate des Schubmittelpunkts folgt schließlich zu:

$$\underline{x_{M0}} = -\frac{3}{8 a^3 h} \frac{5 a^4 h}{3} = -\frac{5}{8} a = -31,3 mm$$

Der Schubmittelpunkt liegt also auf der *x*-Achse rechts *neben* dem Profil (s. Abbildung) !

Das ist bei der Lasteinleitung zu beachten! Erfolgt diese nicht durch den Schubmittelpunkt, tritt neben dem Querkraftschub und der Querkraftbiegung zusätzlich noch Torsion auf.

	"exakt"	DUENQ 6
\overline{x}_{s} [mm]	12,5	12,5
$I_{xx} [10^4 mm^4]$	13,3	13,3
$x_{M0} [mm]$	-31,3	-31,3

Numerische Rechnung (DUENQ 6):

Statisches Moment S_{x0} [10³ mm^3] s. Computerplot:

Damit z. B.:

$$\tau_0(s_2 = a) = -\frac{F_{Qy}}{13,3 \cdot 10^4 mm^4} \frac{1}{0,4 mm} S_{x2}(a)$$
$$= -0,188 \cdot 10^{-4} \frac{S_{x2}(a)}{mm^3} \frac{F_{Qy}}{mm^2}$$
$$= -0,188 \cdot 0,15 \frac{F_{Qy}}{mm^2}$$
$$= -0,0282 \frac{F_{Qy}}{mm^2}$$

